
Package: simr (via r-universe)
September 4, 2024

Type Package

Title Power Analysis for Generalised Linear Mixed Models by Simulation

Description Calculate power for generalised linear mixed models, using
simulation. Designed to work with models fit using the 'lme4'
package. Described in Green and MacLeod, 2016
<doi:10.1111/2041-210X.12504>.

Version 1.0.7-1

URL https://github.com/pitakakariki/simr

BugReports https://github.com/pitakakariki/simr/issues

License GPL (>=2)

Depends lme4 (>= 1.1-16)

Imports
binom,iterators,pbkrtest,plotrix,plyr,RLRsim,stringr,stats,methods,utils,graphics,grDevices,car,lmerTest
(>= 3.0-0)

Suggests testthat,knitr,rmarkdown

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

Repository https://pitakakariki.r-universe.dev

RemoteUrl https://github.com/pitakakariki/simr

RemoteRef HEAD

RemoteSha 23e6090e9cb13dbb9a0e959505990aa401dcc0b5

Contents
simr-package . 2
doFit . 2
doSim . 3

1

https://doi.org/10.1111/2041-210X.12504
https://github.com/pitakakariki/simr
https://github.com/pitakakariki/simr/issues

2 doFit

doTest . 3
extend . 4
getData . 5
lastResult . 6
makeGlmer . 6
modify . 7
powerCurve . 8
powerSim . 9
print.powerSim . 10
simdata . 11
simrOptions . 12
tests . 13

Index 16

simr-package simr: Simulation-based power calculations for mixed models.

Description

simr is a package that makes it easy to run simulation-based power analyses with lme4.

doFit Fit model to a new response.

Description

This is normally an internal function, but it can be overloaded to extend simr to other packages.

Usage

doFit(y, fit, subset, ...)

Arguments

y new values for the response variable (vector or matrix depending on the model).

fit a previously fitted model object.

subset boolean vector specifying how much of the data to use. If missing, the model
is fit to all the data. This argument needs to be implemented for powerCurve to
work.

... additional options.

Value

a fitted model object.

doSim 3

doSim Generate simulated response variables.

Description

This is normally an internal function, but it can be overloaded to extend simr to other packages.

Usage

doSim(object, ...)

Arguments

object an object to simulate from, usually a fitted model.

... additional options.

Value

a vector containing simulated response values (or, for models with a multivariate response such as
binomial gl(m)m’s, a matrix of simulated response values). Suitable as input for doFit.

doTest Apply a hypothesis test to a fitted model.

Description

This is normally an internal function, but it can be overloaded to extend simr to other packages.

Usage

doTest(object, test, ...)

Arguments

object an object to apply a statistical test to, usually a fitted model.

test a test function, see tests.

... additional options.

Value

a p-value with attributes describing the test.

4 extend

extend Extend a longitudinal model.

Description

This method increases the sample size for a model.

Usage

extend(object, along, within, n, values)

Arguments

object a fitted model object to extend.

along the name of an explanatory variable. This variable will have its number of levels
extended.

within names of grouping variables, separated by "+" or ",". Each combination of
groups will be extended to n rows.

n number of levels: the levels of the explanatory variable will be replaced by
1,2,3,..,n for a continuous variable or a,b,c,...,n for a factor.

values alternatively, you can specify a new set of levels for the explanatory variable.

Details

extend takes "slices" through the data for each unique value of the extended variable. An extended
dataset is built from n slices, with slices duplicated if necessary.

Value

A copy of object suitable for doSim with an extended dataset attached as an attribute named
newData.

Examples

fm <- lmer(y ~ x + (1|g), data=simdata)
nrow(example)
fmx1 <- extend(fm, along="x", n=20)
nrow(getData(fmx1))
fmx2 <- extend(fm, along="x", values=c(1,2,4,8,16))
nrow(getData(fmx2))

getData 5

getData Get an object’s data.

Description

Get the data associated with a model object.

Usage

getData(object)

getData(object) <- value

Arguments

object a fitted model object (e.g. an object of class merMod or lm).

value a new data.frame to replace the old one. The new data will be stored in the
newData attribute.

Details

Looks for data in the following order:

1. The object’s newData attribute, if it has been set by simr.

2. The data argument of getCall(object), in the environment of formula(object).

Value

A data.frame with the required data.

Examples

lm1 <- lmer(y ~ x + (1|g), data=simdata)
X <- getData(lm1)

6 makeGlmer

lastResult Recover an unsaved simulation

Description

Simulations can take a non-trivial time to run. If the user forgets to assign the result to a variable
this method can recover it.

Usage

lastResult()

See Also

.Last.value

Examples

fm1 <- lmer(y ~ x + (1|g), data=simdata)
powerSim(fm1, nsim=10)
ps1 <- lastResult()

makeGlmer Create an artificial mixed model object

Description

Make a merMod object with the specified structure and parameters.

Usage

makeGlmer(formula, family, fixef, VarCorr, data)

makeLmer(formula, fixef, VarCorr, sigma, data)

Arguments

formula a formula describing the model (see glmer).

family type of response variable (see family).

fixef vector of fixed effects

VarCorr variance and covariances for random effects. If there are multiple random ef-
fects, supply their parameters as a list.

data data.frame of explanatory variables.

sigma residual standard deviation.

modify 7

modify Modifying model parameters.

Description

These functions can be used to change the size of a model’s fixed effects, its random effect vari-
ance/covariance matrices, or its residual variance. This gives you more control over simulations
from the model.

Usage

fixef(object) <- value

coef(object) <- value

VarCorr(object) <- value

sigma(object) <- value

scale(object) <- value

Arguments

object a fitted model object.
value new parameter values.

Details

New values for VarCorr are interpreted as variances and covariances, not standard deviations and
correlations. New values for sigma and scale are interpreted on the standard deviation scale. This
means that both VarCorr(object)<-VarCorr(object) and sigma(object)<-sigma(object) leave
object unchanged, as you would expect.

sigma<- will only change the residual standard deviation, whereas scale<- will affect both sigma
and VarCorr.

These functions can be used to change the value of individual parameters, such as a single fixed
effect coefficient, using standard R subsetting commands.

See Also

getData if you want to modify the model’s data.

Examples

fm <- lmer(y ~ x + (1|g), data=simdata)
fixef(fm)
fixef(fm)["x"] <- -0.1
fixef(fm)

8 powerCurve

powerCurve Estimate power at a range of sample sizes.

Description

This function runs powerSim over a range of sample sizes.

Usage

powerCurve(
fit,
test = fixed(getDefaultXname(fit)),
sim = fit,
along = getDefaultXname(fit),
within,
breaks,
seed,
fitOpts = list(),
testOpts = list(),
simOpts = list(),
...

)

Arguments

fit a fitted model object (see doFit).

test specify the test to perform. By default, the first fixed effect in fit will be tested.
(see: tests).

sim an object to simulate from. By default this is the same as fit (see doSim).

along the name of an explanatory variable. This variable will have its number of levels
varied.

within names of grouping variables, separated by "+" or ",". Each combination of
groups will be extended to n rows.

breaks number of levels of the variable specified by along at each point on the power
curve.

seed specify a random number generator seed, for reproducible results.

fitOpts extra arguments for doFit.

testOpts extra arguments for doTest.

simOpts extra arguments for doSim.

... any additional arguments are passed on to simrOptions. Common options in-
clude:

nsim: the number of simulations to run (default is 1000).
alpha: the significance level for the statistical test (default is 0.05).
progress: use progress bars during calculations (default is TRUE).

powerSim 9

See Also

print.powerCurve, summary.powerCurve, confint.powerCurve

Examples

Not run:
fm <- lmer(y ~ x + (1|g), data=simdata)
pc1 <- powerCurve(fm)
pc2 <- powerCurve(fm, breaks=c(4,6,8,10))
print(pc2)
plot(pc2)

End(Not run)

powerSim Estimate power by simulation.

Description

Perform a power analysis for a mixed model.

Usage

powerSim(
fit,
test = fixed(getDefaultXname(fit)),
sim = fit,
fitOpts = list(),
testOpts = list(),
simOpts = list(),
seed,
...

)

Arguments

fit a fitted model object (see doFit).

test specify the test to perform. By default, the first fixed effect in fit will be tested.
(see: tests).

sim an object to simulate from. By default this is the same as fit (see doSim).

fitOpts extra arguments for doFit.

testOpts extra arguments for doTest.

simOpts extra arguments for doSim.

seed specify a random number generator seed, for reproducible results.

10 print.powerSim

... any additional arguments are passed on to simrOptions. Common options in-
clude:

nsim: the number of simulations to run (default is 1000).
alpha: the significance level for the statistical test (default is 0.05).
progress: use progress bars during calculations (default is TRUE).

See Also

print.powerSim, summary.powerSim, confint.powerSim

Examples

fm1 <- lmer(y ~ x + (1|g), data=simdata)
powerSim(fm1, nsim=10)

print.powerSim Report simulation results

Description

Describe and extract power simulation results

Usage

S3 method for class 'powerSim'
print(x, alpha = x$alpha, level = 0.95, ...)

S3 method for class 'powerCurve'
print(x, ...)

S3 method for class 'powerSim'
summary(
object,
alpha = object$alpha,
level = 0.95,
method = getSimrOption("binom"),
...

)

S3 method for class 'powerCurve'
summary(
object,
alpha = object$alpha,
level = 0.95,
method = getSimrOption("binom"),
...

simdata 11

)

S3 method for class 'powerSim'
confint(
object,
parm,
level = 0.95,
method = getSimrOption("binom"),
alpha = object$alpha,
...

)

S3 method for class 'powerCurve'
confint(object, parm, level = 0.95, method = getSimrOption("binom"), ...)

Arguments

x a powerSim or powerCurve object

alpha the significance level for the statistical test (default is that used in the call to
powerSim).

level confidence level for power estimate

... additional arguments to pass to binom::binom.confint()

alpha refers to the threshold for an effect being significant and thus directly
determines the point estimate for the power calculation. level is the confidence
level that is calculated for this point evidence and determines the width/coverage
of the confidence interval for power.

object a powerSim or powerCurve object

method method to use for computing binomial confidence intervals (see binom::binom.confint())

parm currently ignored, included for S3 compatibility with stats::confint

See Also

binom::binom.confint, powerSim, powerCurve

simdata Example dataset.

Description

A simple artificial data set used in the tutorial. There are two response variables, a Poisson count z
and a Gaussian response y. There is a continuous predictor x with ten values {1,2,...,10} and a
categorical predictor g with three levels {a, b, c}.

12 simrOptions

simrOptions Options Settings for simr

Description

Control the default behaviour of simr analyses.

Usage

simrOptions(...)

getSimrOption(opt)

Arguments

... a list of names to get options, or a named list of new values to set options.
opt option name (character string).

Value

getSimrOption returns the current value for the option x.

simrOptions returns

1. a named list of all options, if no arguments are given.
2. a named list of specified options, if a list of option names is given.
3. (invisibly) a named list of changed options with their previous values, if options are set.

Options in simr

Options that can be set with this method (and their default values).

nsim default number of simulations (1000).
alpha default confidence level (0.05).
progress use progress bars during calculations (TRUE).
binom method for calculating confidence intervals ("exact").
pbnsim number of simulations for parametric bootstrap tests using pbkrtest (100).
pcmin minimum number of levels for the smallest point on a powerCurve (3).
pcmax maximum number of points on the default powerCurve (10).
observedPowerWarning warn if an unmodified fitted model is used (TRUE).
carTestType type of test, i.e. type of sum of squares, for tests performed with car::Anova ("II").
lmerTestDdf approximation to use for denominator degrees of freedom for tests performed with

lmerTest ("Satterthwaite"). Note that setting this option to "lme4" will reduce the lmerTest
model to an lme4 model and break functionality based on lmerTest.

lmerTestType type of test, i.e. type of sum of squares, for F-tests performed with lmerTest::anova.lmerModLmerTest
(2). Note that unlike the tests performed with car::Anova, the test type must be given as a
number and not a character.

tests 13

Examples

getSimrOption("nsim")
oldopts <- simrOptions(nsim=5)
getSimrOption("nsim")
simrOptions(oldopts)
getSimrOption("nsim")

tests Specify a statistical test to apply

Description

Specify a statistical test to apply

Usage

fixed(
xname,
method = c("z", "t", "f", "chisq", "anova", "lr", "sa", "kr", "pb")

)

compare(model, method = c("lr", "pb"))

fcompare(model, method = c("lr", "kr", "pb"))

rcompare(model, method = c("lr", "pb"))

random()

Arguments

xname an explanatory variable to test (character).

method the type of test to apply (see Details).

model a null model for comparison (formula).

Details

fixed: Test a single fixed effect, specified by xname.

compare: Compare the current model to a smaller one specified by the formula model.

fcompare, rcompare: Similar to compare, but only the fixed/random part of the formula needs to
be supplied.

random: Test the significance of a single random effect.

Value

A function which takes a fitted model as an argument and returns a single p-value.

14 tests

Methods

The method argument can be used to specify one of the following tests. Note that "z" is an asymp-
totic approximation for models not fitted with glmer and "kr" will only work with models fitted
with lmer.

z: Z-test for models fitted with glmer (or glm), using the p-value from summary. For models fit-
ted with lmer, this test can be used to treat the t-values from summary as z-values, which is
equivalent to assuming infinite degrees of freedom. This asymptotic approximation seems to
perform well for even medium-sized data sets, as the denominator degrees of freedom are al-
ready quite large (cf. Baayen et al. 2008) even if calculating their exact value is analytically
unsolved and computationally difficult (e.g. with Satterthwaite or Kenward-Roger approxi-
mations). Setting alpha=0.045 is roughly equal to the t=2 threshold suggested by Baayen et
al. (2008) and helps compensate for the slightly anti-conservative approximation.

t: T-test for models fitted with lm. Also available for mixed models when lmerTest is installed, us-
ing the p-value calculated using the Satterthwaite approximation for the denominator degrees
of freedom by default. This can be changed by setting lmerTestDdf, see simrOptions.

lr: Likelihood ratio test, using anova.

f: Wald F-test, using car::Anova. Useful for examining categorical terms. For models fitted with
lmer, this should yield equivalent results to method='kr'. Uses Type-II tests by default, this
can be changed by setting carTestType, see simrOptions.

chisq: Wald Chi-Square test, using car::Anova. Please note that while this is much faster than
the F-test computed with Kenward-Roger, it is also known to be anti-conservative, especially
for small samples. Uses Type-II tests by default, this can be changed by setting carTestType,
see simrOptions.

anova: ANOVA-style F-test, using anova and lmerTest::anova.lmerModLmerTest. For ‘lm‘,
this yields a Type-I (sequential) test (see anova); to use other test types, use the F-tests pro-
vided by car::Anova() (see above). For lmer, this generates Type-II tests with Satterthwaite
denominator degrees of freedom by default, this can be changed by setting lmerTestDdf and
lmerTestType, see simrOptions.

kr: Kenward-Roger test, using KRmodcomp. This only applies to models fitted with lmer, and
compares models with different fixed effect specifications but equivalent random effects.

pb: Parametric bootstrap test, using PBmodcomp. This test will be very accurate, but is also very
computationally expensive.

Tests using random for a single random effect call exactRLRT.

References

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling with crossed
random effects for subjects and items. Journal of Memory and Language, 59, 390–412.

Examples

lm1 <- lmer(y ~ x + (x|g), data=simdata)
lm0 <- lmer(y ~ x + (1|g), data=simdata)
anova(lm1, lm0)
compare(. ~ x + (1|g))(lm1)

tests 15

rcompare(~ (1|g))(lm1)
Not run: powerSim(fm1, compare(. ~ x + (1|g)))

Index

.Last.value, 6

anova, 14

binom::binom.confint, 11
binom::binom.confint(), 11

car::Anova, 12, 14
coef<- (modify), 7
compare (tests), 13
confint.powerCurve, 9
confint.powerCurve (print.powerSim), 10
confint.powerSim, 10
confint.powerSim (print.powerSim), 10

doFit, 2, 3, 8, 9
doSim, 3, 4, 8, 9
doTest, 3, 8, 9

exactRLRT, 14
extend, 4

family, 6
fcompare (tests), 13
fixed (tests), 13
fixef<- (modify), 7

getData, 5, 7
getData<- (getData), 5
getSimrOption (simrOptions), 12
glm, 14
glmer, 6, 14

KRmodcomp, 14

lastResult, 6
lm, 14
lmer, 14
lmerTest, 12, 14
lmerTest::anova.lmerModLmerTest, 12, 14

makeGlmer, 6

makeLmer (makeGlmer), 6
merMod, 6
modify, 7

PBmodcomp, 14
powerCurve, 2, 8, 11, 12
powerSim, 8, 9, 11
print.powerCurve, 9
print.powerCurve (print.powerSim), 10
print.powerSim, 10, 10

random (tests), 13
rcompare (tests), 13

scale<- (modify), 7
sigma<- (modify), 7
simdata, 11
simr-package, 2
simrOptions, 8, 10, 12, 14
stats::confint, 11
summary, 14
summary.powerCurve, 9
summary.powerCurve (print.powerSim), 10
summary.powerSim, 10
summary.powerSim (print.powerSim), 10

tests, 3, 8, 9, 13

VarCorr<- (modify), 7

16

	simr-package
	doFit
	doSim
	doTest
	extend
	getData
	lastResult
	makeGlmer
	modify
	powerCurve
	powerSim
	print.powerSim
	simdata
	simrOptions
	tests
	Index

